Third Semester B.E. Degree Examination, Dec. 07 / Jan. 08 Logic design

Time: 3 hrs. Max. Marks:100

Note: 1. Answer any FIVE full questions.
2. Assume missing data if any suitably.

- a. Two motors M₂ and M₁ are controlled by three sensors S₃, S₂ and S₁. One motor M₂ is to run any time all three sensors are on. The other motor is to run whenever sensors S₂ or S₁ but not both are on and S₃ is off. For all sensor combinations where M₁ is on, M₂ is to be off except when all the three sensors are off and then both motors must remain off. Construct the truth table and write the Boolean output equation. (06 Marks)
 - b. Simplify using Karnaugh map. Write the Boolean equation and realize using NAND gates. $D = f(w, x, y, z) = \Sigma(0,2,4,6,8) + \Sigma d(10,11,12,13,14,15)$. (06 Marks)
 - c. Simplify $P = f(a, b, c) = \Sigma(0,1,4,5,7)$ using two variable Karnaugh map. Write the Boolean equation and realize using logic gates. (08 Marks)
- 2 a. Simplify using Karnaugh map $L = f(a, b, c, d) = \pi(2,3,4,6,7,10,11,12)$ (06 Marks)
 - b. Simplify using Quine Mc Cluskey tabulation algorithm- $V = f(a, b, c, d) - \Sigma(2, 3, 4, 5, 13, 15) + \Sigma d(8, 9, 10, 11)$

 $V = f(a, b, c, d) = \Sigma(2,3,4,5,13,15) + \Sigma d(8,9,10,11)$ (14 Marks)

- Design a combinational circuit that will multiply two two-bit binary values. (08 Marks)
 - Design a 4 to 16 decoder using two 3 to 8 decoder (74LS138).
 (06 Marks)
 - Design a keypad interface to a digital system using ten line BCD encoder (74LS147).
 (06 Marks)
 - a. Design a binary full subtractor using minimum number of gates. (06 Marks)
 - Explain the terms
 - i) Ripple carry propagation
 - ii) Propagation delay
 - iii) Look- ahead carry
 - iv) Iterative design. (04 Marks)
 - c. Realize $F = f(x, y, z_1) = \Sigma(1, 2, 4, 5, 7)$ using 8 to 1 multiplexer (74LS151). (04 Marks)
 - Design a two bit binary magnitude comparator. (06 Marks)
 - Explain with timing diagram the working of a S. R latch as a switch debouncer. (06 Marks)
 - b. Explain the working of a Master slave JK Flip-Flop with functional table and timing Show how race around condition of master-slave SR Flip-Flop is over come.
 - (08 Marks)

 Life is the significance of edge triggering? Explain the working of edge triggered

 D-flip-flop and T-flip-flop with their functional table. (06 Marks)
 - a. Obtain the characteristic equation for a SR flip-flop (04 Marks)
 - Least circuit diagram, explain the working of a universal shift register. (08 Marks)
 - Design a synchronous Mod-6 counter using clocked J K flip-flop.
 (08 Marks)

Marks) epiction (Marks)

mg.

ks)

ts)

ers

rks)

for

rks)

VIS

rts) ades

mA,

wide total

arks)

ator.

arks)

ator.

arks) and

arks)

and

larks)

- b. For the state machine M1 shown in Fig. Q 7(b), obtain
 - i) State table
 - ii) Transition table
 - iii) Exaltation table for T flip-flop
 - iv) Logic circuit for T exaltation realization.

(16 Marks)

Fig. Q 7(b)

- Construct a mealy state diagram that will detect a serial sequence of 10110. When the input
 pattern has bee detected, cause an output Z to be asserted high. (98 Marks)
 - b. Design a cyclic modulo-8 synchronous counter using J-K flip-flop that will count the number of occurrences of an input; that is, the number of times it is a 1. The input variable X must be coincident with the clock to be counted. The counter is to count in binary.